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Abstract—The growing popularity of the consumer IoT inten-
sifies the risks for security and privacy breaches. It typically
suffices to successfully attack a single IoT device to access the
home network illicitly. This observation emphasizes the need
for in-network security, complementing each device’s security
mechanisms with additional network-layer protection. Recently,
the IETF proposed Manufacturer Usage Description (MUD)
to limit network traffic of IoT devices to their required min-
imum. However, the tangled communication of IoT devices,
e.g., connections to smartphones and smart speakers, is not
covered by MUD. We propose Distributed Enforcement of MUD
on Smartphones (DEMONS), extending central enforcement of
MUD with distributed enforcement at authenticated smartphones
to mitigate the threats of malicious apps and IoT devices by
filtering malicious traffic close to its origin and preventing further
spread. We discuss the security gains and demonstrate that the
introduced overhead regarding latency, bandwidth, and power
consumption has a negligible performance impact.

Index Terms—security and privacy, smart home, Internet of
Things, access control, policy-based network security, MUD

I. INTRODUCTION

We observe an increasing number of locally and Internet-
wide connected devices in smart homes [13]. However, this
development bears severe security risks since these devices are
known for their frequent security flaws [3], [18], [7]. Indeed,
many already deployed Internet of Things (IoT) devices suffer
from missing or weak encryption of communication [4], the
use of well-known standard passwords [12], and complicated
or lacking update mechanisms [19]. These vulnerabilities,
among others, facilitate the massive infiltration of malware on
IoT devices, e. g., to form large botnets. Even worse, a single
compromised device in a home, e.g., a legacy device with
known vulnerabilities, often suffices for attackers to gain local
network access and infect other devices. Therefore, improving
IoT and smart home security needs to address the emerging
risks of illicit access to the local network, e. g., via a malware-
laden smartphone [16] or by targeting legacy devices.

A promising approach in this context is in-network security
offering additional protection to the security mechanisms
implemented on the devices. In particular, policy-based ap-
proaches restrict the allowed network traffic of each IoT device
to the required connections for completing its functions [17],
[14]. Hence, they leverage the fact that many IoT devices
have a limited purpose with regular communication patterns,
e.g., a sensor periodically reporting its measurements. The
main idea thus follows the principles of least privilege and
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Fig. 1. Different communication scenarios between control apps (smart-
phones) and IoT devices. Due to dynamic IP addresses of smartphones and
central enforcement, current policy-based approaches, such as MUD, only
cover (b) indirect communication (green line), where the traffic flows through
a cloud server. Other traffic to/from smartphones remains unfiltered (red lines).

defense in depth, reducing the attack surface of a device and
limiting the damage of infected devices. Recently, the Internet
Engineering Task Force (IETF) proposed Manufacturer Usage
Description (MUD) [9], which enables IoT devices to signal
the network their required connections as communication
rules. The standard defines a format for these rules and how
a central network entity, e. g., the home router, can securely
retrieve the rules of a connected device from a trusted source.

Nevertheless, considering that users typically interact with
IoT devices using a smartphone [7] questions the effectiveness
of enforcing MUD rules only centrally at the router. Indeed,
similar to [11] and shown in Fig. 1, we observe different
scenarios for the communication between smartphone and
IoT devices. Since MUD omits multi-purpose devices, like
smartphones or tablet computers, it currently only covers
indirect communication (cf. Fig. 1(b)), where the traffic flows
through a cloud service. Moreover, the standard does not
define how and where traffic enforcement should occur. There-
fore, based on our findings in [6], we consider the different IoT
communication scenarios and the pivotal role of smartphones,
arguing that malicious traffic should be filtered close to its
origin before spreading further in the home network.
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Hence, we propose Distributed Enforcement of MUD on
Smartphones (DEMONS) to efficiently enforce MUD rules for
IoT devices in smart homes. We mitigate the risks emanating
from smartphones and IoT devices by extending MUD to re-
strict access to the local network. Based on [6], we implement
a central Local MUD Manager (LMM), which we complement
with Mobile MUD Enforcement Engines (MMEEs) running on
different smartphones associated with the home network. The
MMEEs enforce MUD rules close to the IoT devices, which
reduces unwanted network traffic and even extends MUD
enforcement to IoT devices directly connected to a smart-
phone. Our solution neither restricts the devices’ intended
functionality nor significantly influences latency, bandwidth,
or power consumption. Our contributions are as follows:

1) We thoroughly summarize the problem space and the re-
quirements for enforcing MUD in smart homes (Sec. II);
2) We propose a scalable framework for distributed MUD
enforcement in complex smart home networks (Sec. III);
3) We provide a detailed evaluation regarding the security
benefits and the performance of our prototype (Sec. IV).

II. PROBLEM ANALYSIS AND RELATED WORK

We analyze the current state of policy-based security for
smart homes by summarizing the MUD standard and its limi-
tations (Sec. II-A). Then, we generalize the considered attacker
model (Sec. II-B) and present the related work (Sec. II-C).

A. MUD and Its Current Limitations

Manufacturer Usage Description (MUD) [9] is a recently
proposed standard by the IETF specifying access control for
smart devices. The key idea is that so-called MUD files, which
contain Access Control Lists (ACLs), describe the accepted
network connections for each IoT device. MUD files thus
enable the narrow definition of the expected communication
behavior of IoT devices since such devices usually have
limited functionality and thus only require a small set of
allowed connections. Moreover, MUD files can be transformed
into rules that can be enforced at a central networking device
to restrict access, prohibit undesired behavior from the outset,
and serve as a reasonable basis for intrusion detection.

Today, MUD is well received and even supported by global
players like Cisco and Google, acknowledging its potential
for improving smart home security. However, the current
standard does not appropriately cover all smart home devices,
including smartphones and smart TV, for two distinct reasons:
(1) Devices typically use dynamic IP addresses. While MUD
allows defining abstract device classes as endpoints, mapping
non-IoT devices to such classes, especially given changing IP
addresses, is not examined. Thus, currently, MUD files cannot
conveniently define connections involving individual devices,
whether deployed locally or in an external network. (ii) Even
if defining such connections would succeed, the resulting
rules would apply to entire devices. However, general-purpose
devices provide various services, e.g., multiple apps on a
smartphone. Hence, all these apps would gain access to the
IoT devices instead of dedicated control apps only.

Consequently, the MUD standard does not consider the
different interactions between IoT devices and others inside
and outside the local network, which attackers can readily
exploit as an entry point to a smart home. To better understand
this weakness, we continue with our general attacker model.

B. Attacker Model

A widespread assumption for smart home security is that
IoT devices are locally protected against unauthorized access
from the Internet. However, this assumption does not reflect
the current situation of smart homes, where attackers typically
only compromise a single device to gain access to the network.

Therefore, we assume that the attacker successfully accessed
the victim’s home network, either by compromising one of her
IoT devices or by infiltrating a malicious app on her smart-
phone. Then, following the Dolev-Yao attacker model [1], the
attacker can overhear, intercept, and modify any message at the
compromised device and perform passive and active attacks
within the local network. In particular, the attacker would
scan the network for vulnerable IoT devices and subsequently
exploit these vulnerabilities to spread its malware further.

According to the Dolev-Yao model, the attacker is not ca-
pable of breaking state-of-the-art security methods. However,
in contrast to Dolev-Yao, we assume that the attacker focuses
on both legacy and state-of-the-art devices with known and
unknown vulnerabilities, which is, unfortunately, a reasonable
assumption for smart homes [3], [10], [7]. In the following, we
give a short overview of related work before explaining how
DEMONS counters this powerful attacker model in Sec. III.

C. Related Work

Our previous work [6] provided a comprehensive overview
of related work, showing that existing in-network security
solutions do not sufficiently consider the risks emanating
from complex smart home networks. Consequently, we pro-
posed a general solution concept to extend MUD to smart-
phones, which we use as a starting point for this paper.
With DEMONS, in turn, we provide a concrete design and
implementation of MMEE and LMM, including the details
regarding their interaction and hedge against interference by
third parties. We thoroughly evaluate the performance and
security to determine its potential for smart home security.

Furthermore, we acknowledge that the attention for com-
plex smart home communication and challenges for suitable
security mechanisms is growing. Sikder et al. [15] extend
access control to support multi-user multi-device scenarios in
smart homes by restricting the communication of individual
apps to specific IoT devices. However, their solution only
targets apps running on a smart home platform by Samsung,
neglecting smartphone apps. Similarly, Zhang et al. [20]
propose a solution for traffic monitoring of smart home apps
to detect malicious behavior, again targeting only apps running
on Samsung’s platform. While their work does not consider
the risks emerging from smartphones, it still confirms our
hypothesis that device-based access control is insufficient due
to individual (malicious) apps running on the same device.



Afek et al. [2] deploy a MUD-based solution for protecting
IoT devices on the ISP level. While their system only offers
device-based access control, again omitting individual services
such as smartphone apps, they recognize the problem of
dynamic IP addresses (cf. Sec. II) and tackle it with tracking
applications. These run, e.g., on smartphones and report
metadata including the current IP address to a central instance,
which then maps it to placeholders in MUD files.

III. DESIGN

To close the gap left by existing policy-based approaches,
we propose DEMONS, which effectively covers the different
IoT communication scenarios. We describe our system’s over-
all architecture before going into its details, identifying and
addressing challenges left open by existing related work, and
highlighting the security benefits of our architecture.

A. Architecture

Based on [6], we define two main components in DEMONS,
a central Local MUD Manager (LMM) and Mobile MUD
Enforcement Engines (MMEEs) running on different smart-
phones associated with the home network (cf. Fig. 2). To
restrict the communication between IoT devices and devices
to control them, the central LMM is deployed in the local
home network on top of a Software-Defined Networking
(SDN) controller (1). The LMM enforces MUD policies as
the MUD manager described in [9] while benefiting from the
SDN paradigm, which allows installing dynamic flow rules
at SDN switches in the local network and thus fine-granular
steering of the local network traffic. By running the SDN
controller on the same device as, e. g., the local DHCP server,
the SDN controller and thus the LMM’s IP address is well-
known to all devices connected to the local network. The IoT
devices advertise themselves by transmitting MUD URLs as
specified in [9], e.g., using DHCP. Consequently, the LMM
is aware of all local IoT devices, including their MAC and IP
addresses. Further, the LMM uses the MUD URLSs to retrieve
the individual MUD files of the present IoT devices.

The LMM cannot reliably distinguish traffic that emerges
from different services running on the same device. Further-
more, the original MUD standard only considers connections
between IoT devices and cloud services or specific groups of
devices. However, defining connections to individual devices,
such as smartphones, is not feasible because of their (usually)
dynamic IP addresses. The consideration of individual services
or apps running on a device is not included at all.

To cover the traffic from individual smartphones and
their individual apps, distributed MMEEs complement the
LMM (2). These MMEEs run directly on smartphones and
filter the app traffic. Therefore, each MMEE maintains a flow
table configured based on extended MUD files (cf. Sec. III-C),
including the apps’ legit communication behavior. The deploy-
ment of MMEEs on smartphones further helps the LMM to
identify individual smartphones as valid control devices and
to determine whether they should be allowed to communicate
with IoT devices or not. To this end, the MMEE advertises
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Fig. 2. DEMONS architecture [6]: @ a central LMM filters the traffic of all
IoT devices in the network, enabling traffic to/from authorized smartphones
and the Internet as defined in the IoT devices’ MUD files. @ MMEEs on
smartphones authenticate the smartphone to the LMM and filter app traffic.

the smartphone (and its current IP address) as a valid con-
trol device permitting only policy-complying communication
of control apps running on the smartphone. Consequently,
DEMONS only allows those apps to communicate with locally
deployed IoT devices if the respective connections are defined
in the MUD files on both the LMM and the MMEE. The
LMM and the MMEE block all other local communication
of smartphones (i. e., without a respective rule or MUD file),
where Internet connections remain untouched to ensure non-
IoT functionality. In particular, smartphones without MMEE
experience unrestricted access to the Internet, while the LMM
blocks all their local traffic to protect the smart home network.

Except for the abstract MUD manager, neither [9] nor [6]
specify how to implement the enforcement within the local
network. We thus propose a concrete design in the following.

B. Device-based Enforcement

After an IoT device announces its presence and transmits
the URL of its MUD file to the LMM, a parser module
checks the file’s validity and authenticity as described in [9].
To identify authorized smartphones (running an MMEE), we
integrate an authentication manager into LMM and MMEE.
The authentication manager enables the MMEEs to establish
a secure, encrypted connection and authenticate themselves to
the LMM, e. g., using certificates and cryptographic protocols
such as TLS. Then, they gain general local communication
permission, which is revoked as soon as the connection
between MMEE and LMM is interrupted to avoid take-over
by third parties.

To state a concrete authorized smartphone within a MUD
file, we leverage the my—-controller node defined in
the MUD standard. This node allows specifying a group of
IP addresses as an endpoint within Access Control Entries
(ACEs). Thus, we define abstract rules for communication
with smartphones in the IoT devices’ MUD files and enforce
them by mapping the IP addresses of authorized smartphones
to my—-controller endpoints at run-time. Furthermore, we
extend the head of the MUD files with a node to include
control apps of the respective IoT device, e.g., app package
names. This information is passed from the LMM to the
MMEE to exclude all other apps from communication.

To enforce ACEs from MUD files, the LMM converts them
into flow rules and installs these at appropriate networking



\ ~—|Local MUD Manager

SDN controller

- loT device
authenilcatlon URIs + IPs
key exchange henticat MUD
authentication MUD parser . S
manager file %
10T device URIs + IPS ey S
MUD
‘ flow rule table m‘ MUD converter ‘ file server

rules

check
rules

filtered traffic

rule enforcer

1 Mobile MUD Enforcement Engine

smartphone

Fig. 3. MMEE architecture: the authentication manager performs authentica-
tion to the LMM, enabling local communication. The MUD parser retrieves
MUD files of installed apps, extracts rules, and passes them to the MUD
converter to create flow rules for filtering-based enforcement.

devices, e. g., SDN switches. Besides, there are multiple modes
that we can implement to handle the traffic of IoT devices that
have no MUD file available. One possibility is to generally
drop all traffic associated with the local network and allow
connections to and from the Internet only if defined in a
global whitelist, e.g., containing official domains of device
manufacturers. This policy provides a fair trade-off between
security and functionality as undesired (and in particular local)
access to the IoT devices is hindered while control via known
cloud services is still possible (cf. Fig. 1(b)). Alternatively, in
favor of functionality, the user might unlock single IoT devices
to enable their full connectivity. Since different modes provide
different trade-offs between security and function, we leave the
final decision to the user to ensure usability. However, note
that whenever a valid MUD file is available, the advertised
functionality of the IoT device is not restricted by design.

C. App-based Enforcement

In Fig. 3, we depict the precise architecture of the MMEE.
We envision the MMEE to be natively embedded into any
smartphone’s OS, encouraging use and hindering undetected
modification as additionally protected by a chain of security
mechanisms'-2. As an alternative, however, implementing the
MMEE within the smartphone’s user-space as a conventional
app is also possible, easing deployment and distribution.

By design, the MMEE runs permanently in the background
to enable uninterrupted traffic filtering, comparable to a host-
based firewall. The rule enforcer module of the MMEE is
responsible for monitoring and filtering traffic of all apps
installed in the user space of the smartphone. To provide rules
for individual apps, we extend the original MUD files [9] with
sensible nodes. In the MUD file header, we include the app’s
package name and signing certificate that the MMEE validates
against the respective installed app to prevent spoofing of
MUD files. We further define connections to specific IoT
devices within ACEs by adding a node dev-uri for stating
device URIs. These URIs can be matched against broadcasts
from IoT devices or device information forwarded from the

Uhttps://source.android.com/security/overview/kernel-security
Zhttps://support.apple.com/de-de/guide/security/welcome/web

LMM. To exclude faked or modified MUD files, the MMEE
validates their signature according to the MUD standard.
Shipping of the MUD URLSs can be combined with the
download of apps. Moreover, the MMEE regularly checks for
updates of MUD files, also considering the last-update
and cache-validity nodes provided by MUD.

If an LMM is available, the MMEE authentication manager
establishes a secure connection to the LMM. If implemented
in the OS, we can ship and anchor certificates with the
OS, thus providing high integrity when, e.g., using TLS. In
a user-space implementation, Android’s Keystore system? is
an example of the convenient storage of certificates. After
successful authentication, the smartphone is enabled for local
communication in compliance with MUD files of apps and
IoT devices, ensured by both MMEE and LMM.

For apps without MUD file, we can restrict local communi-
cation without limiting non-IoT functionality. For instance, we
can block all local traffic from apps without MUD files, while
Internet traffic is not subject to filtering by default. Another
possibility is to allow the user to unlock single apps, thus
enabling their full functionality. As this option entails the risk
of local attacks, a more viable approach is to handle missing
MUD files of apps using category-based policies similar to [5].

D. Security Benefits and Limitations

Compared to existing solutions, our approach covers all
communication scenarios identified in Sec. I by design. Be-
sides indirect (cf. Fig. 1(b)) and bridged local (cf. Fig. 1(d))
communication, the MMEE even allows us to control direct
communication between IoT devices and smartphone apps
(cf. Fig. 1(a)), e.g., via Bluetooth. Our approach does not
distinguish between smartphones of residents and visitors,
enabling secure multi-user multi-device scenarios without ad-
ditional effort. To allow for remote control offered by many
IoT devices (cf. Fig. 1(c)), a third party on the Internet, e. g.,
a manufacturer cloud service, can mediate between MMEE
and LMM. This cloud service then enables authentication and
controlled access to IoT devices, even from remote networks.

To visualize the benefits of our design, we depict two
example scenarios of a smart home with several IoT devices.
In Fig. 4, we assume a MUD manager deployed at the local
router, thus blocking traffic from malicious servers on the
Internet. However, the traffic of smartphone apps remains
untouched, allowing access from benign and malicious apps.
In contrast, Fig. 5 shows how DEMONS addresses this vul-
nerability by applying fine-granular filtering of app traffic in
all communication scenarios. Furthermore, having provided
a valid MUD file, traffic of benign control apps and their
advertised function is not restricted.

Even though our approach primarily aims to improve the
security of control apps for IoT devices, we can apply it to
all other apps to further reduce the attack surface and avoid
connections to untrusted servers. Furthermore, the MMEE
can be easily transferred to other complex IoT devices. For

3https://developer.android.com/training/articles/keystore
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instance, smart TVs or smart fridges usually run the same OS
as smartphones, e.g., Android TV or Tizen, allowing us to
deploy the same (or slightly modified) implementation.
Despite its benefits, DEMONS also has its limitations.
Our solution equally supports apps from IoT manufacturers
and third-party apps. However, this still requires correspond-
ing MUD files for apps and devices. Furthermore, original
manufacturers might not even provide MUD files. While we
see crowd-sourcing as a possible solution for crafting and
validating MUD files for apps and devices, this idea needs
further investigation. Furthermore, our SDN-based approach
offers fine-granular traffic filtering, but it does not consider
payload, which is also unrealistic for encrypted packets. Thus,
elaborate attacks could still exploit authorized connections.
In conclusion, the LMM offers general protection to IoT
devices, whereas the MMEE targets security vulnerabilities
emerging from unrestricted use of smartphone apps to control
IoT devices. Both components individually prevent single
attacks, e.g., the MMEE increases security even in SDN-
free environments. Finally, their combination leads to a truly
comprehensive protection of smart homes. In the following,
we thoroughly evaluate DEMONS, showing its plausibility.

IV. EVALUATION

To prove its feasibility and effectiveness, we implement and
evaluate DEMONS concerning both security and performance.
Before diving into the details and results of our evaluation, we
shortly describe our prototype and general set-up.

-- -+ Wi-Fi LMM
- Ethernet Ryu controller
OpenFlow 1.3
MMEE
------ Open | ------. loT device/
Android ) :
smartphone VSV’:ltCh Raspberry Pi
Internet

Fig. 6. Evaluation set-up of DEMONS, allowing both Ethernet and Wi-Fi
connections between smartphone and IoT device / Raspberry Pi.

A. Implementation and General Set-up

We realize the LMM as an application running on top of
the Python-based OpenFlow Controller Ryu* and connecting
it to a virtual Open vSwitch using Mininet’, connected
to the Internet. It further uses Ethernet and Wi-Fi interfaces
provided by the underlying hardware. We connect physical
devices, including smartphones, IoT devices, and a Raspberry
Pi, using these interfaces. Thus, our set-up for the evaluation
follows the network topology depicted in Fig. 6.

While we generally envision the deployment of the MMEE
as part of the smartphone’s OS as described in Sec. III-C,
we refrain from implementing our prototype within the OS
due to the required root access. Instead, we opt for a user-
space implementation as an Android app, extending the open-
source firewall NetGuard®. This firewall uses Android’s
VpnService’ and allows simple app-based filtering of out-
going traffic. In particular, we add components for the authen-
tication manager and the MUD parser and converter, and we
customize NetGuard’s rule tables and methods for rule look-
up (cf. Fig. 3). Android’s container-based Keystore system®
supports the protection of private keys used to authenticate
the MMEEs to the LMM. Furthermore, if not embedded in the
OS, we assume that MMEEs are only installed from official
sources, e. g., Google Play Store, to restrict the deployment of
modified implementations. In the following, we first evaluate
the security-related functionality of DEMONS. Subsequently,
we conduct a thorough performance evaluation.

B. Security Evaluation

A crucial aspect of our evaluation is to show the feasibility
of DEMONS, i.e., improving smart home security without
impeding the advertised functionality of apps and IoT devices.
In the following, we show the effectiveness of DEMONS by
analyzing its security improvement for existing smart home
attacks. Then, we validate its correct functioning by comparing
the network traffic with and without DEMONS.

1) Effectiveness: We evaluate DEMONS’ effectiveness us-
ing existing smart home attacks identified by [8] and relying on
our attacker model (cf. Sec. II-B). In a smart home deployment
consisting of a Google Home speaker, a TP-Link smart light

“https://github.com/osrg/ryu
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Shttps://github.com/M66B/NetGuard
7https://developer.android.com/reference/android/net/VpnService
Shttps://developer.android.com/training/articles/keystore



TABLE I

SECURITY ANALYSIS OF DEMONS ACCORDING TO THE PRACTICAL SMART HOME ATTACKS IDENTIFIED BY [8]

Attack  Involved Devices Attack Description Mitigation
Smartphone, Almahclous webserver pings all loca.l IP addresses using v DEMONS would locally block pings and http re-
Case 1 Google Home PingModel. It sends http req. using WebSocket to uests if not explicitly whitelisted
& obtain sensitive information from the Google Home. quests pucttly T
Smartphone, A malicious Webse¥ver sends http—reque?sts‘ with v DEMONS would block the http-request such that
WebSocket to obtain the Google Home built-in cer- . . .
Case 2 Google Home, . i , Co - the attacker would neither gain the certificate nor the
G tificate and app_device_id. It uses this information : .
oogle Home server ' app_device_id.
to access the user account on the Google Home server.
Google Home (& server), As a follow-up attack to attack case 2, the attacker =~ DEMONS cannot prevent the follow-up attack, occur-
Case 3 TP-Link server, can use the compromised user account to control other  ring via Google Home server. However, it would prevent
TP-Link smart light devices in the smart home, such as the smart light bulb.  the previous user account attack (see attack case 2).
Smartphone, An attacker steals the TP-LINK authorization token via X DEMONS .Would not P revent this attacl.(,' smce Fhe
. . attacker exploits an Android backup vulnerability, outside
Case 4  TP-Link server, a backup channel attack to gain full control of the smart .
TP-Link smart light light bulb the scope of DEMONS. The attacker then dlrectly_ targets
’ the TP-Link server to gain control of the smart light.
. Lo , V" Since the malicious app would not be able to provide
Cuse 5 Smartphone, _ A malicious app, which is installed on the user’s smart- a valid MUD profile, DEMONS would block all local
TP-LINK smart light phone uses UDP broadcast to control the smart light bulb. L .
traffic originating from this app by default.
Smartphone v" Similar to the previous attack case, DEMONS would
Case 6 TP-LINK server, A malicious app uses UDP broadcast to bind the smart  block all local traffic originating from the malicious app,

TP-LINK smart light light bulb to the attacker’s account.

since it does not have a valid MUD profile. Hence, the
attacker could not take over the user’s account.

bulb, and a smartphone, the authors identified six distinct
attack cases covering a wide range of vulnerabilities. For
our work, we are hence interested to what extent DEMONS
mitigates the identified attack cases. Therefore, based on the
results presented in [8], we analyze DEMONS’ effectiveness
for each attack case. Table I lists the corresponding results.

The results show that DEMONS effectively mitigates local
attacks. By blocking unauthorized local broadcasts and con-
nections, it prevents attack cases 1 and 2. Moreover, apps need
a valid MUD profile to access the local network, and this pro-
file limits the possible connections to the necessary minimum,
which mitigates attack cases 5 and 6. Finally, DEMONS does
not completely mitigate attack cases 3 and 4 since these attacks
target the Google Home and TP-Link servers via the Internet,
outside the scope of DEMONS. However, for attack case 3,
DEMONS would prevent the attacker from gaining the Google
Home built-in certificate and app_device_id, which are a
prerequisite to compromise the user account.

To sum up, this case study shows that DEMONS mitigates
existing vulnerabilities concerning typical devices in smart
homes. It is hence a valuable extension to existing smart home
security measures. However, it does not exempt cloud service
providers from implementing adequate security mechanisms
for further protection. Next, we validate whether DEMONS
ensures the advertised functionality of IoT devices.

2) Validation: We deploy two IoT devices, a smart light
bulb by LIFX® and a smart plug by TP-Link'?. Their respective
control apps run on a Motorola Moto G4 with Android 6.0.
‘We connect the devices to the virtual switch via Wi-Fi. Then,
we record the device traffic both in a traditional wireless
network and in combination with the DEMONS prototype

https://uk Jifx.com/products/lifx
10https://www.kasasmart.com/us/products/smart-plugs/
kasa-smart-wifi-plug-hs100

described in Sec. IV-A. For both IoT devices, we create
simple MUD files, which we deploy at the LMM. To provide
example rules, we define all local IPv4-based connections to
and from control apps as allowed while all other traffic should
be dropped. Moreover, we create MUD files for the control
apps, permitting them only to communicate with their own
IoT device. We deploy these MUD files at the MMEE.

First, with the IoT devices deployed in a local network with-
out DEMONS, we can turn the devices on and off using their
respective control apps using Wi-Fi and via cloud services.
This behavior corresponds to their advertised description. Sub-
sequently, we deploy DEMONS but do not yet provide MUD
files to the MMEE but only to the LMM. Consequently, we
cannot control the IoT devices since only apps with valid MUD
files are allowed for communication with IoT devices. Hence
the recorded traffic does not contain any packets sent from
the smartphone to the IoT devices. Finally, after providing
the apps’ MUD files to the MMEE, we can control the IoT
devices, but (as intended) only from the local network. As we
do not define permitted connections to and from the Internet
for IoT devices or apps, control via cloud services is still
restricted. Accordingly, packets exchanged between external
servers and smartphone or IoT devices are not contained in
the recorded traffic. Most importantly, by deploying a ping
app, we note that other apps can still not connect to the IoT
devices, which is possible in the absence of DEMONS.

Overall, this validation shows that DEMONS behaves as
intended and enables fine-granular traffic filtering between
apps and IoT devices. Next, due to its importance for usability,
we empirically evaluate the performance of DEMONS.

C. Performance Evaluation

We evaluate the performance of our approach regarding
latency, bandwidth, and power consumption. Therefore, we
connect a Raspberry Pi, representing an IoT device, and
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a Motorola Moto G4, running the MMEE in Android 6.0,
to the virtual switch sequentially via Ethernet and Wi-Fi
(cf. Fig. 6). Both LMM and MMEE need to match traffic
against the rules derived from MUD files to decide how to
handle it. The number of rules deployed at the LMM generally
increases with the IoT devices in the network. Similarly, the
number of rules at the MMEE increases with the installed
apps. Concerning scalability, we thus conduct our latency
and bandwidth evaluation depending on different, generously
chosen numbers of non-matching fake rules installed at both
components, simulating the presence of further devices and
apps with MUD files. We create real MUD files for all actually
deployed devices and apps, defining the evaluated connections
as “allowed”. All of our result graphs apply logarithmic scales,
and the error bars represent the 95% confidential intervals.

1) Latency: Since increased latency can limit service func-
tions, we first evaluate the latency overhead introduced by
our implementations of LMM and MMEE when using Eth-
ernet. We conducted 30 runs, during each of which we sent
100 ping messages from the smartphone to the IoT device
(i.e., the Raspberry Pi) and calculated the average latency
over all runs. Furthermore, we conducted this evaluation for
different numbers of rules from none to 1000, against which
both MMEE and LMM need to compare traffic to apply the
filtering. We depict the corresponding results in Fig. 7.

In the figure, we see increased latencies for the first ping
message compared to the subsequent 99 messages, even when
filtering is neither executed at LMM nor MMEE. This salience
is due to the use of SDN with OpenFlow, requiring that
the first packet of a connection is always forwarded from
the switch to the SDN controller to request flow treatment
instructions. All subsequent packets are then handled directly
by the switch, avoiding the initial overhead. While the latency
expectedly increases depending on the number of rules, it
does not exceed 4 ms for 1000 rules installed at both LMM
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Fig. 9. Average bandwidth with 95% confidential intervals depending on the
number of rules to match against and in comparison with NetGuard. The first
two bars represent the baseline with no traffic filtering at all.

and MMEE compared to about 2ms when filtering is deacti-
vated. Thus, the latency only noticeably increases for the first
packet of a connection with a maximum latency of 100 ms
for 1000 installed rules at LMM and MMEE. However, for
the subsequent course of the connection, the latency is not
significantly impaired.

To substantiate the described findings, we additionally mea-
sured the overhead introduced by different numbers of rules
at the MMEE by comparing the timestamps at the beginning
and the end of the filtering function. The results, shown in
Fig. 8, confirm that even if traffic needs to be matched against
10000 rules, i.e., when a large number of IoT devices are
deployed, this leads only to a latency overhead of about 8 ms
compared to 2 ms for 1000 rules. We deem this an acceptable
impact considering the application in smart homes.

2) Bandwidth: Lowered bandwidth has an impact both on
functionality and user experience. Thus, we evaluate how the
bandwidth is influenced by DEMONS using iPerf3 via
Ethernet and again regarding different numbers of installed
rules to represent the scalability of our system. We conducted
50 runs, during which 1GB of data was sent from the
smartphone to the Raspberry Pi, respectively, using TCP and
UDP. The corresponding results are depicted in Fig. 9.

We noticed that NetGuard, the basis for our MMEE,
generally enables a higher bandwidth. We explain this by
the fact that Net Guard applies, e. g., custom socket options
like setting TCP_NODELAY. Consequently, we evaluate our
system against the original implementation of NetGuard
with deactivated traffic filtering. The results show that the
traffic filtering introduced by DEMONS does not significantly
decrease the throughput for both TCP and UDP, even with
1000 rules installed at LMM and MMEE.

3) Power: Another essential factor for the user experience
is the power consumption of the MMEE, which runs on the
user’s smartphone. We use the mobile energy measurement
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Fig. 10. Average smartphone current for different activity levels using Wi-
Fi, each measured over 60s. The first bar represents the baseline (disabled
Internet, standby mode, no MMEE installed).

framework PowerGraph!! to evaluate the energy consump-
tion of the MMEE while considering different activity loads.
We use a Wi-Fi connection and the activity loads comprise
the following modes.

Standby: The screen is off; no actively running app.

Idle: The screen is on; no actively running app.

Active:  The screen is on; ping messages are constantly

sent with an interval of 200 ms.
We measured the drawn electric current for each activity for
90s, leading to 713340 measuring points in total. We then
calculated the average current after cutting off the first and last
15, respectively, to filter out transient phases. The evaluation
results are displayed in Fig. 10.

Considering all test cases, we observe the smartphone’s
average current to be increased only by 5.72mA at worst.
Concerning a typical battery capacity of 3000mAh (e.g.,
the Motorola Moto G4), our results indicate a run time of
around 13.58 hours of the smartphone if running in the active
mode and without having an MMEE installed. Hence, the
deployment of the MMEE leads to a reduction of 0.4 hours
(or 2.9%) in battery life, leaving a run time of 13.18 hours.

To sum up, our evaluation results show a slight increase
in latency and power consumption when using our prototype.
Since smart home services are, in general, not time-sensitive,
we consider the performance impact as a reasonable trade-
off regarding the provided security benefits (cf. Sec. III-D).
The different numbers of rules deployed during evaluation
indicate good scalability and usability of DEMONS, even
in the presence of various IoT devices. However, since it
would operate closer to the hardware, we expect even better
performance for the implementation of the MMEE in the OS
as envisioned in our design (cf. Sec. III-C).

V. CONCLUSION

In this paper, we aim to improve the security of smart homes
by addressing the threats originating from malware-laden
smartphones and legacy IoT devices. Therefore, we propose
DEMONS, a distributed enforcement of MUD-based network
policies that extends the centralized LMM with distributed
MMEE:s running directly on authenticated smartphones. Based
on the functionality of each IoT device within the smart
home and its necessary connections to other devices, we
thus enable fine-granular filtering of local network traffic.
Consequently, only authorized smartphone apps are allowed

htps://www.comsys.rwth-aachen.de/fileadmin/misc/2015/powergraph/

to communicate with IoT devices according to predefined
MUD rules. We implemented and evaluated a proof of concept
showing only a negligible impact on communication latency,
bandwidth, and smartphone power consumption. Furthermore,
our security evaluation shows that our approach effectively
mitigates existing vulnerabilities of typical IoT devices in
smart homes without limiting the intended functionality.
Although this study focuses on smartphones used for inter-
action with IoT devices, the design of DEMONS is, in general,
applicable to all IoT devices not covered by MUD, such as
smart TVs and smart speakers. Distributed enforcement thus
opens new possibilities for scalable IoT security by blocking
malicious network traffic close to its origin. Hence, for future
work, we propose to evaluate DEMONS in complex smart
home deployments with multiple MMEEs. Further, we want to
contribute our extensions to the current IETF MUD standard.
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